Faithfully Flat Descent

Det: Let C be a contegory with fiber products. A morphism $f: Y \rightarrow X$ is if for all $Y \times_X Y \rightrightarrows Y \stackrel{p}{\to} X$, $Hom(X, Z) \stackrel{f^*}{\to} Hom(Y, Z) \rightrightarrows Hom(Y \times_Z Y, Z)$ a strict epimorphism has ft as the equalizer, VZ. Example: A surjection of schemes need not be a strict epimorphism. Consider: $Y = \text{Speck } \subseteq \text{Speck[} E]/E^2 = X$, and set Z = X. Then $Hom(X,X) \rightarrow Hom(Y,X)$ is not injective, and so cannot be an equalizer. Thus (Descent for morphisms): A faith flat $f: y \rightarrow x$ of finite type is a strict epimorphism. Prop: If f is a faith. flat morphism of rings, then the sequence of A-modules: $(*) \quad O \rightarrow A \xrightarrow{f} B \xrightarrow{d'} B \otimes_{A} B \xrightarrow{d'} B \otimes_{A} B \otimes_{A} B \xrightarrow{d^{2}} \cdots$ (Anitsur complex. where $e_i(b_0 \otimes \cdots \otimes b_{r-1}) = b_0 \otimes \cdots \otimes b_{i-1} \otimes 1 \otimes b_i \otimes \cdots \otimes b_{r-1}$, and $d^{r-1} = \sum_{i=0}^{r-1} (-1)^i e_i$, is exact. <u>Proof</u>: Prop 2.18 in EC. $d^2=0$ is standard. To see exactness, first assume $f: A \rightarrow B$ has a left inverse $g: B \rightarrow A$. Define $R_r: B^{\otimes r+2} \rightarrow B^{\otimes r+1}$ by One can check Rry d^{ry} + d^rR_r = id. So the complex is contractible, and so it is exact. Now it suffices to show BOR (*) is an exact complex by faithful flatness. But this complex is: $\bigcirc \rightarrow \square \rightarrow \square @_{A} \square \rightarrow \cdots$ This has a left inverse by bot into. = B' => We are done. b → b&1. We claim that if M is an A-module, then Mox (*) is still exact. Indeed since f is faithfully flat, it suffices to check that after tensoring with B, B & M & (*) is still exact. But (*) @AB is the Amitsur complex for the map B -> B @AB, and noting that this is contractible gives the claim by homological algebree. Now we prove the theorem (Thm. 2.17 in EC). Proof: Note this is the same as saying the Grothendieck topology of faithfully flat maps of finite type is subcanonical. Consider $\forall \star \forall \longrightarrow \forall$ y f X) is an equalizer diagram.

We first look at the affine case. Set X = Spec A, Y = Spec B, Z = Spec C. Then the diagram is : Hom(C, A) -> (Hom(C, B) => Hom(C, BOB), which gives

$O \rightarrow A \rightarrow B \rightarrow B \otimes_{A} B$	B. H. Aster
	=> Done.
31. 2	complex.

Now suppose only Z is arbitrary. Then we want:

Y x Y I tirst show unique. Suppose we have $g_1 + g_2$ which work $(g_1 \circ f = g_2 \circ f)$. Since I to f is surjective, $g_1 = g_2$ set-theoretically. Its enough now to show they are Y h locally the same. Let U contain $g_1(x) = g_2(x)$ for some $x \in X$, thun f $\int_{-\pi}^{\pi} Z = \int_{0}^{\pi} (U) = g_2^{-1}(U) \in X = Spec A$. We can assume $U = X_a = Spec A_a$, hence $f^{-1}(X_a) c Y$ X \tilde{A} is $Y_b = Spec B_b$. By case (a), $g_1|_{X_a} = g_2|_{X_a} \Longrightarrow g_1 = g_2$ by glueing local ones.

Let $x \in X$, and $y \in f^{-1}(x)$. Choose an affine open $U \in \mathbb{Z}$ containing $h(y) \in \mathbb{Z}$. Now we claim $f(h^{-1}(u)) \in X$. Since f is flat and finite type, this set is open. Hence we can choose an affine open V of x inside $f(h^{-1}(u))$. Since X = Spec A, choose $V = \text{Spec } A_a = X_a$. Thus $f^{-1}(X_a) = Y_b$, and we only need to check $h(Y_b)$. But this follows from fiber products, and we are in case (a).

The general case is in the text. 12

Thm (FGA explained): "fptf (f.flet fin.type) C fpgc": A covering f:y -> X is a faithfully flet map such that & guasi-compact UCX, U=f(g.c. open in X). Moreover, fpgc is subcanonical.

Exercise G: Show that Speck[t] \rightarrow Speck[t³, t⁵] is an epimorphism, but not a strict epimorphism.

Descending Modules
Let f: A > B be f. flat M an A-module. Setting M'= B@AM = f. M. by the Amitsur
complex :
$A \xrightarrow{f} B \xrightarrow{c} B \otimes_{A} B \xrightarrow{c} B \otimes_{A} B \xrightarrow{c} B \otimes_{A} B \xrightarrow{c} \cdots$
$e_1 \rightarrow e_2$
$e_{\alpha\nu} \Lambda \dot{a} = (B \otimes_{A} B) \otimes_{a} M' = B \otimes_{A} M' \omega / (b_{\alpha} \otimes b_{\alpha}) (b \otimes M') = b_{\alpha} b \otimes b_{\alpha} M'.$
$P_{M}(M' = (R \otimes B) \otimes (M' = M' \otimes B) (M \otimes b) (M' \otimes b) = b M' \otimes b b$
So we have an isomerphism d: ex M' -> ene M' via (bom) ob' -> bo(b'om).
We can recover M from \$ by M= SmEM' 10m = \$/m@1) }.
Now given some M', under what conditions can we recover M? Such conditions
are called descent data. For M' = BOAM for some M, we surely need an isomorphism
\$: e, M' → eox M', such that if
$\phi_1 = B \otimes \phi : B \otimes_A M' \otimes_A B \longrightarrow B \otimes_A B \otimes_A M'$
$\phi_{*} = {}^{\prime\prime}\phi \otimes B \otimes \phi^{\prime\prime} : M' \otimes B \otimes B \longrightarrow B \otimes B \otimes M'$
$\phi_3 = \phi \otimes B: M' \otimes B \otimes B \longrightarrow B \otimes M' \otimes B$

Thun
$$\phi_{k} = \phi_{1}, \phi_{2}$$
. This is called the cascile condition. It turns out this is example to get an M. How to find M? Ret
M. SmeM' | 10m. $\phi(nog1)$?,
and show $B\otimes_{k}M \cong M'$. This is return technical, but the upshot is:
Thus: Given a fifth f: A -373 of rings, we get an equivalence of cotogories:
A-Med \rightarrow [Decent data $(\phi, M) = (\phi_{1}, \phi_{1})$.
Tags Let f: Y -3 X be fifth and guessi-compact map of schemes. Thus giving a
quest column function X is the same as giving, a guessi calcent should M on Y with
 $\phi: \rho_{1}^{*}M' \rightarrow \rho_{2}^{*}M'$, $p_{1}^{*}(\phi) = p_{2}^{*}(\phi) = p_{2}^{*}(\phi)$ in the diagram:
 $y_{X_{k}} y_{X_{k}} y \xrightarrow{\phi_{1}} y_{x_{k}} y \xrightarrow{\phi_{1}} Y \stackrel{\phi_{2}}{\rightarrow} X$.
Project 1: Let f: Y -3 X be fifth and guessi-compact. Thus diagram:
 $y_{X_{k}} y_{X_{k}} y \xrightarrow{\phi_{1}} y_{x_{k}} y \xrightarrow{\phi_{1}} Y \stackrel{\phi_{2}}{\rightarrow} X$.
Project 1: Let f: Y -3 X be fifth and guessi-compact. Thus in
 $X \times Y \longrightarrow Y$
 $f' \mid f_{k}$
 $\chi' \xrightarrow{\phi_{1}} y$
if f is g compact (coparated, fun type, proper, open immersion, affine, furte, g furte, flat,
smooth, clate), then so is f. (Do any 3).
Project 3 (3 exercise): Mot worth 14.
Consider G a group acting on a top space Y. Thus: $G \times Y \xrightarrow{\phi} Y$, and this
can be extended to:
 $G \times Y \times Y \xrightarrow{\phi_{1}} y \xrightarrow{\phi_{1}} y \xrightarrow{\phi_{2}} y \stackrel{(\phi_{1}) \to \infty}{\to} y$.
So a sheaf for Y is G-guession if given $\Theta: \pi^{*} f \longrightarrow \infty$ with the lifth $\pi^{*} \sigma^{*} F$
we can take $X = Y/G = u' f Y \rightarrow X$, thus a clear on X with the lifth $\pi^{*} \sigma^{*} F$
we can take $X = Y/G = u' f Y \rightarrow X$, thus a clear on X with the lifth $\pi^{*} \sigma^{*} F$.